Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs.

نویسندگان

  • Attila Molnár
  • Tibor Csorba
  • Lóránt Lakatos
  • Eva Várallyay
  • Christophe Lacomme
  • József Burgyán
چکیده

RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA interference in animals and posttranscriptional gene silencing (PTGS) in plants. In plants, PTGS acts as an antiviral system; a successful virus infection requires suppression or evasion of the induced silencing response. Small interfering RNAs (siRNAs) accumulate in plants infected with positive-strand RNA viruses and provide specificity to this RNA-mediated defense. We present here the results of a survey of virus-specific siRNAs characterized by a sequence analysis of siRNAs from plants infected with Cymbidium ringspot tombusvirus (CymRSV). CymRSV siRNA sequences have a nonrandom distribution along the length of the viral genome, suggesting that there are hot spots for virus-derived siRNA generation. CymRSV siRNAs bound to the CymRSV p19 suppressor protein have the same asymmetry in strand polarity as the sequenced siRNAs and are imperfect double-stranded RNA duplexes. Moreover, an analysis of siRNAs derived from two other nonrelated positive-strand RNA viruses showed that they displayed the same asymmetry as CymRSV siRNAs. Finally, we show that Tobacco mosaic virus (TMV) carrying a short inverted repeat of the phytoene desaturase (PDS) gene triggered more accumulation of PDS siRNAs than the corresponding antisense PDS sequence. Taken together, these results suggest that virus-derived siRNAs originate predominantly by direct DICER cleavage of imperfect duplexes in the most folded regions of the positive strand of the viral RNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DCL4 targets Cucumber mosaic virus satellite RNA at novel secondary structures.

It has been reported that plant virus-derived small interfering RNAs (vsiRNAs) originated predominantly from structured single-stranded viral RNA of a positive single-stranded RNA virus replicating in the cytoplasm and from the nuclear stem-loop 35S leader RNA of a double-stranded DNA (dsDNA) virus. Increasing lines of evidence have also shown that hierarchical actions of plant Dicer-like (DCL)...

متن کامل

Application of Virus-derived small interfering RNAs (vsiRNAs) in rice viruses with insect vectors, especially Rice grassy stunt virus

Rice grassy stunt virus (RGSV) a member of Tenuivirus family, is very potent and destructive which effects rice crop in many countries, particularly China. Non coding RNAs have important functions in development and epigenetic regulation of gene expression in numerous organsisms. There is three type of small non coding RNAs have been found in eukaryotes, which are small interferring RNAs (siRNA...

متن کامل

Classification and comparison of small RNAs from plants.

Regulatory small RNAs, which range in size from 20 to 24 nucleotides, are ubiquitous components of endogenous plant transcriptomes, as well as common responses to exogenous viral infections and introduced double-stranded RNA (dsRNA). Endogenous small RNAs derive from the processing of helical RNA precursors and can be categorized into several groups based on differences in biogenesis and functi...

متن کامل

Highly Abundant Small Interfering RNAs Derived from a Satellite RNA Contribute to Symptom Attenuation by Binding Helper Virus-Encoded RNA Silencing Suppressors

Satellite RNAs (satRNAs) are always found accompanying a helper virus (HV) upon which they are functionally dependent for replication (catalyzed by an RNA replicase coded in part by the HV) and transmission (following encapsidation by the HV coat protein) (Palukaitis, 2016). Most satRNAs have a small size, lower than 700 nt, and do not encode any protein, with the Y satRNA (Y-Sat) of cucumber m...

متن کامل

Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense

To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 79 12  شماره 

صفحات  -

تاریخ انتشار 2005